>
产品中心 >
Functional_antibody >
PhosphoSolutions/NMDA Receptor NR2C Subunit (Ser1096) Antibody/p1518-1096/100 µl
Rabbit polyclonal antibody
Pooled Serum- Size:
- 100 µl
- Formulation:
- Affinity Purified from Pooled Serum
- Specificity:
- Rat, Mouse, Human, Bovine, Non-human primate, Canine
- Applications:
- WB 1:1,000
- Species:
- Rabbit
- Gene Name:
- GRIN2C
- Molecular Reference:
- ~140 kDa
- Cite This Antibody:
- PhosphoSolutions Cat# p1518-1096, RRID:AB_2492185
Antigen/Purification: Collapse
The antigen is a synthetic phospho-peptide surrounding the phospho Ser1096 of the NR2C-subunit of rat NMDA receptor.
The antibody is prepared from pooled rabbit serum by affinity purification via sequential chromatography on phospho- and dephospho-peptide affinity columns.
Biological Significance: Collapse
The ion channels activated by glutamate that are sensitive to N-methyl-Daspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer’s, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The NR2C subunit of the receptor is thought to influence the NMDAR conductance level (Ebralidze et al., 1996). Phosphorylation of Ser1096 by PKB on NR2C has been recently demonstrated to regulate NMDA receptor binding to 14-3-3 (Chen & Roche 2009)
Storage
100 µl in 10 mM HEPES (pH 7.5), 150 mM NaCl, 100 µg per ml BSA and 50% glycerol. Adequate amount of material to conduct 10-mini Western Blots.
For long term storage –20° C is recommended. Stable at –20° C for at least 1 year.
General References
Alvestad RM, Grosshans DR, Coultrap SJ, Nakazawa T, Yamamoto T, Browning MD (2003) Tyrosine dephosphorylation and ethanol inhibition of N-methyl-D-aspartate receptor function. J Biol Chem 278:11020-11025.
Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571-577.
Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16:5014-5025.
Grosshans DR, Clayton DA, Coultrap SJ, Browning MD (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5:27-33.
Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721-1724.
Lu W-Y, Xiong Z-G, Lei S, Orser BA, Browning MD, MacDonald JF (1999) G-protein coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neurosci 2:331-338.
Snell LD, Nunley KR, Lickteig RL, Browning MD, Tabakoff B, Hoffman PL (1996) Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Mol Brain Res 40:71-78.
Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335-358.
Chen BS, Roche KW (2009) Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron;62(4):471-8.
Note: Dr. Michael Browning, a co-author of four of the cited papers, is President and founder of PhosphoSolutions.